Publications

Peer-Reviewed Papers

  1. The phase of plasticity-induced neurochemical changes of high-frequency repetitive transcranial magnetic stimulation are different from visual perceptual learning, Lin SN, Lien YR, Shibata K, Sasaki Y, Watanabe T, Lin CP, & Chang LH, Scientific Reports, 2023, 13:5720.
  2. Decrease in signal-related activity by visual training and repetitive visual stimulation, (*co-first author) Marzoll A*, Shibata K*, Toyoizumi T, Chavva I, & Watanabe T, iScience, 2022, 25(12):105492.
  3. MRS-measured glutamate versus GABA reflects excitatory versus inhibitory neural activities in awake mice, (*co-first author) Takado Y*, Takuwa H*, Sampei K, Urushihata T, Takahashi M, Shimojo M, Uchida S, Nitta N, Shibata S, Nagashima K, Ochi Y, Ono M, Maeda J, Tomita Y, Sahara N, Near J, Aoki I, Shibata K, & Higuchi M, Journal of Cerebral Blood Flow & Metabolism, 2021, 42(1):197-212.
  4. Visual perceptual learning of a primitive feature in human V1/V2 as a result of unconscious processing, revealed by decoded functional MRI neurofeedback (DecNef), Wang Z, Tamaki M, Frank SM, Shibata K, Worden MS, Yamada T, Kawato M, Sasaki Y, & Watanabe T, Journal of Vision, 2021, 21(8):24.
  5. The DecNef collection, fMRI data from closed-loop decoded neurofeedback experiments, Cortese S, Tanaka SC, Amano K, Koizumi A, Lau H, Sasaki Y, Shibata K, Taschereau-Dumouchel V, Watanabe T, & Kawato M, Scientific Data, 2021, 65.
  6. Preserving Agency During Electrical Muscle Stimulation Training Speeds up Reaction Time Directly After Removing EMS, Kasahara S, Takada K, Nishida J, Shibata K, Shimojo S, & Lopes P, Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1-9.
  7. Pain Control by Co-adaptive Learning in a Brain-Machine Interface, Zhang S, Yoshida W, Mano H, Yanagisawa T, Mancini F, Shibata K, Kawato M, & Seymour B, Current Biology, 2020, 30:3935-3944.
  8. Perception, Cognition, and Action in Hyperspaces: Implications on Brain Plasticity, Learning, and Cognition, Ogmen H, Shibata H, & Yazdanbakhsh A, Frontiers in Psychology, 2020, 10:3000.
  9. Spatial variability induces generalization in contextual cueing, Higuchi Y, Ueda Y, Shibata K, & Saiki J, Journal of Experimental Psychology: Learning, Memory, and Cognition, 2020, 46(12):2295–2313.
  10. Neural signals in amygdala predict implicit prejudice toward an ethnic outgroup, Izuma K, Aoki R, Shibata K, & Nakahara K, NeuroImage, 2019, 189:341-352.
  11. Toward a comprehensive understanding of the neural mechanisms of decoded neurofeedback, Shibata K, Lisi G, Cortese S, Watanabe T, Sasaki Y, & Kawato M, NeuroImage, 2019, 188:539-556.
  12. Consolidation and reconsolidation share behavioral and neurochemical mechanisms, (*co-first author) Bang JW*, Shibata K*, Frank SM*, Walsh EG, Greenlee M, Watanabe T, & Sasaki Y, Nature Human Behavior, 2018, 2:507-513.
  13. Neural activity in the reward-related brain regions predicts implicit self-esteem: A novel validity test of psychological measures using neuroimaging, Izuma K, Kennedy K, Fitzjohn S, Sedikides C, & Shibata K, Journal of Personality and Social Psychology, 2018, 114(3):343-357.
  14. Advances in fMRI real-time neurofeedback, (*co-first author) Watanabe T*, Sasaki Y*, Shibata K*, & Kawato M, Trends in Cognitive Sciences, 2017, 21:997-1010.
  15. Thermosensory perceptual learning is associated with structural brain changes in parietal-opercular (SII) cortex, Mano H, Yoshida W, Shibata K, Zhang S, Koltzenburg M, Kawato M, & Seymour B, Journal of Neuroscience, 2017, 37(39):9380-9388.
  16. Overlearning hyperstabilizes a skill by rapidly making neurochemical processing inhibitory-dominant, Shibata K, Sasaki Y, Bang JW, Walsh EG, Machizawa MG, Tamaki M, Chang LH, & Watanabe T, Nature Neuroscience, 2017, 20:470-475.
  17. Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure, Koizumi A, Amano K, Cortese A, Shibata K, Yoshida W, Seymour B, Kawato M, & Lau H, Nature Human Behavior, 2016, 1:0006.
  18. Neural predictors of evaluative attitudes towards celebrities, Izuma K, Shibata K, Matsumoto K, & Adolphs R, Social Cognitive and Affective Neuroscience, 2017, 12(3):382-390.
  19. Differential activation patterns in the same brain region led to opposite emotional states, Shibata K, Watanabe T, Kawato M, & Sasaki Y, PLoS Biology, 2016, 14(9): e1002546.
  20. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback, Amano K, Shibata K, Kawato M, Sasaki Y, & Watanabe T, Current Biology, 2016, 26(14):1861-1866.
  21. Neuroimaging evidence for 2 types of plasticity in association with visual perceptual learning, Shibata K, Sasaki Y, Kawato M, & Watanabe T, Cerebral Cortex, 2016, 26(9):3681-3689.
  22. A small number of abnormal brain connections predicts adult autism spectrum disorder, Yahata N, Morimoto J, Hashimoto R, Lisi G, Shibata K, Kawakubo Y, Kuwabara H, Kuroda M, Yamada T, Megumi F, Imamizu H, Náñez JE, Takahashi H, Okamoto Y, Kasai K, Kato N, Sasaki Y, Watanabe T, & Kawato M, Nature Communications, 2016, 7:11254.
  23. Age-related declines of stability in visual perceptual learning, Chang LH, Shibata K, Andersen GJ, Sasaki Y, & Watanabe T, Current Biology, 2014, 24(24):2926-2929.
  24. Two-stage model in perceptual learning: toward a unified theory, Shibata K, Sagi D, & Watanabe T, Annals of the NY Academy of Sciences, 2014, 1316:18-28.
  25. Decoding reveals plasticity in V3A as a result of motion perceptual learning, Shibata K, Chang LH, Kim D, Nanez JE, Kamitani Y, Watanabe T, & Sasaki Y, PLoS One, 2012, 7(8): e44003.
  26. Resetting capacity limitations revealed by long-lasting elimination of attentional blink through training, Choi H, Chang LH, Shibata K, Sasaki Y, & Watanabe T, Proceedings of the National Academy of Sciences of USA, 2012, 109(30):12242-12247.
  27. Preference suppression caused by misattribution of task-irrelevant subliminal motion, Shibata K & Watanabe T, Proceedings of the Royal Society B, 2012, 279(1742):3443-8.
  28. Monocular deprivation boosts long-term visual plasticity, Shibata K, Kawato M, Watanabe T, & Sasaki Y, Current Biology, 2012, 22(9):R291-292.
  29. Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation, Shibata K, Watanabe T, Sasaki Y, & Kawato M, Science, 2011, 334(6061):1413-1415.
  30. Boosting perceptual learning by fake feedback, Shibata K, Yamagishi N, Ishii S, & Kawato M, Vision Research, 2009, 49(21):2574-2585.
  31. The effects of feature attention on pre-stimulus cortical activity in the human visual system, Shibata K, Yamagishi N, Goda N, Yoshioka T, Yamashita O, Sato M, & Kawato M, Cerebral Cortex, 2008, 18(7):1664-1675.

Book chapters

  1. Mechanisms of fMRI neurofeedback, Shibata K, in fMRI Neurofeedback, Edited by Michelle Hampson, Academic Press, 2021.